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EXECUTIVE SUMMARY 
 
Most structural components encountered in army vehicles and armor can be classified as beams, 
plates, or shells for analysis purposes. While these structural elements are designed to function 
properly under thermo-mechanical loads encountered in their use, they do develop high stresses 
and experience high vibration frequencies that may make them non-functional in actual service 
conditions. The objective of this research is to develop consistent plate and shell theories and 
associated computational framework for linear and non-linear problems of structural dynamics in 
which localized high gradients of the solutions are resolved accurately and time accuracy of the 
solution is assured at all stages during the evolution. Crucial importance of this framework will 
be demonstrated computationally through well known benchmark model problems in the area of 
solid mechanics with special focus on composite structures. The developed methodology and the 
resulting infrastructure with its applications to solid and structural mechanics problems should 
provide highly reliable, robust and accurate computational technology to the United States Army 
Laboratories. The specific objectives of this research were: 
  

• Develop accurate and consistent structural theories and associated finite element models 
of plates and shells that account for transverse shear deformation and illustrate the 
accuracy using benchmark plate and shell problems. 

• Develop mixed and least-squares finite element models of the refined theories for the 
analysis of plates and shells.  

 
In the following pages a technical discussion of the scientific progress made and 
accomplishments are summarized in two parts: 
 

1. A robust shell finite element for nonlinear analysis of composite and functionally graded 
shells, and 

2. Mixed least-squares finite element models for bending and vibration of plates. 
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1. LARGE DEFORMATION ANALYSIS OF SHELLS 

 
1.1 Introduction 

 Composite shells have been of great interest in many engineering applications. Composites 
made up of fiber-reinforced laminae that are bonded together (Reddy, 2004) are particularly 
attractive. A typical lamina is often characterized as orthotropic with the principal material 
directions of each lamina coinciding with the fiber direction and transverse to it. As required in a 
design, by changing the material type, fiber orientation, or thickness, the designer can tailor the 
different properties of a laminate to suit a particular application. Despite their multiples 
advantages, laminated composites exhibit a serious shortcoming due to concentrations of 
stresses, as well as in-surface displacements, caused by the piece-wise variation of the material 
properties through the thickness of the shell. Consequently, a special material named 
“functionally graded materials” (FGMs) was proposed by Koizumi (1997) and Yamanouchi et al. 
(1990), in which the material properties vary smoothly and continuously from one surface to the 
other. These materials are inhomogeneous and made from isotropic components. The gradation 
of the material properties through the thickness avoids jumps or abrupt changes on the stress and 
displacement distributions of any thin-walled structure. 
 In some applications shell structures can experience large elastic deformations and finite 
rotations. Geometric nonlinearity plays an essential role in the behavior of the shell, especially 
when it reaches large deformations. Previous studies show that laminated shells exhibit drastic 
changes in their bending response (Başar et al.,1993; Vu-Quoc and Tan, 2003; Balah and Al-
Ghamedy, 2002). Even for homogeneous and isotropic shells we observe an unpredictable 
behavior (Simo et al., 1990; Sansour and Kollmann, 2000). Therefore, it is of vital importance to 
study the nonlinear response of potentially inhomogeneous materials such as functionally graded 
shells. 
 This paper is motivated by the lack of studies found in the literature that addresses large 
deformation analysis for FGM shells. A review of technical articles shows that few studies have 
been carried out to investigate the nonlinear bending response of plates and shells. Most of them 
use von Kármán or Sanders theories which are restricted to moderately small deformations. We 
cite the papers of Na and Kim (2005), who examined the effect of thermal loading and uniform 
pressure on the bending response of FGM plates; and Yang and Shen (2003a,b), who analyzed 
the nonlinear bending and postbuckling behavior for FGM plates under thermomechanical load 
with various boundary conditions. Woo and Meghid (2001) provided an analytical solution for 
large deflection FGM plates and shells under mechanical and thermal loading; while Ma and 
Wang (2003) examined the axisymmetric large deflection bending and thermal postbuckling of 
FGM circular plates subjected to mechanical and thermal loading. Both articles are based on the 
classical von Kármán plate theory. 
 Moreover, Reddy and Chin (1998) analyzed the dynamic thermoelastic response of 
functionally graded cylinders and plates. Praveen and Reddy (1998) carried out a nonlinear 
thermoelastic analysis of functionally graded ceramic-metal plates using a finite element model 
based on the FSDT. Thermomechanical buckling, as well as bending and free vibration analysis, 
of FGM plates can be found in the articles by Reddy and Arciniega (2006a,b). Further studies of 
bending and vibration analyses of FGMs plates can be found in the articles of Reddy (2000), and 
Della Croce and Venini (2004). 
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 On the subject of computational models for shell structures, we focus our attention on tensor-
based finite element models (Harte and Eckstein, 1986). This approach is able to determine all 
properties of the shell’s differential geometry exactly. Additional errors, introduced by 
approximating the geometry of the midsurface of the shell (as in continuum-based finite element 
models), are prevented from the beginning. Previous works of the authors using tensor-oriented 
finite element formulations for linear analysis of laminated shells can be found in Arciniega and 
Reddy (2005), and Reddy and Arciniega (2004). 
 In this paper, a large deformation analysis for functionally graded shells is presented. The 
formulation is based on the first-order shear deformation theory with seven independent 
parameters (Sansour, 1995; Bischoff and Ramm, 1997) where no plane stress assumption is 
required (3D constitutive equations). A tensor-based finite element model is developed using 
high-order Lagrange elements to preclude membrane shear locking. The gradation of the 
material properties of the FGM shell is considered through the thickness. The material stiffness 
tensor is obtained by Gauss integration. Numerical results are presented for typical benchmark 
problems with applications to functionally graded shells. 

1.2.  Theoretical Formulation 

The shell theory will be briefly discussed here. For a detailed development, one can consult the 
paper of Arciniega and Reddy (2006) and references herein. The mathematical background 
utilized in the following derivation is given in the books of Naghdi (1963) and (1972), Green and 
Zerna (1968), and Pietraszkiewicz (1979). 
 Let us introduce in the region ( )R tB B  a convected curvilinear coordinate system 

3,2,1},{ =iiθ , such that the surface 03=θ  defines the midsurface ( )R tM M  of the region 

( )R tB B . The coordinate 3θ  is the measure of the distance between points RP ∈B  ( )tP ∈B  

and ( )R tM M∈ ∈M M , with 3_ / 2 / 2h hθ≤ ≤ , where h is the thickness of the shell (Fig. 1). 

 
Fig. 1. Shell continuum in the reference and current configurations. 
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 Consider the motion ( ), tχ X  of the shell body B  from the reference configuration RB  to 

the current configuration tB . Since a convected coordinate system { }iθ  has been adopted, 
geometric quantities of the region tB  are analogous to those defined in RB . In the Lagrangian 
description, the displacement of the particle X  from the reference configuration to the current 
configuration is given by the vector ( ), tv X , i.e. 

  
( ) ( ), ,

i j
i j

t t

V V

χ= − −

= =

v X X X = x X

g g
 (1) 

wherein the last line is in component form with respect to the region RB . 
 We introduce the first kinematical assumption for the shell model: “the displacement field is 
considered as a linear expansion of the thickness coordinate around the midsurface. The 
transverse displacement is parabolic through the thickness of the shell”. 

 This assumption implies that 

  ( ) ( ) ( ) ( )3 3 2( )α α α αθ θ θ θ θ θ= + +v u ϕ ψ  (2) 

where 

  ( ) ( ) ( ) 3
3, ,i i

i iuα α αθ θ ϕ θ ψ= = =u a a aϕ ψ  (3) 

The underlined term of equation (2) is included to avoid Poisson locking (Bischoff and Ramm, 
1997). 
 The position vector of the deformed shell can be obtained substituting equation (2) into (1). 
Thus 

  3 3 2
3 ( )θ θ= + +x r a ψ  (4) 

where = +r r u  and 3 3= +a a ϕ . The vector ϕ  is also called difference vector (change of the 
director of the midsurface). The director 3a  is, in general, neither a unit vector nor orthogonal to 

tM . The configuration of the shell is uniquely determined by the displacement vector u  of the 
midsurface together with the difference vector ϕ  and the additional variable ψ , or by seven 
independent components of these vectors (Sansour, 1995). 
 We now introduce the Green strain tensor E  as a measure of the strain for a material 
description 

  1 ( )
2

= −E C G  (5) 

where T=C F F  is the right Cauchy-Green tensor, i j
ijg= ⊗G g g  is the Riemannian metric in 

the reference configuration and i
i= ⊗F g g  is the deformation gradient. We define the covariant 

space and surface base vectors in the current configuration as ig  and ia , respectively. 
 The shifter tensor μ  is a two-point tensor which relates the region RB  to the reference 

midsurface RM  and it is useful to define the tensor Ê  as 
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  ( )ˆ TΦ∗= =E E μ Eμ  (6) 

where ( )Φ∗ D  is the pull-back operator. 

 The tensor Ê  can be expanded as a function of the thickness coordinate, i.e. 

  0 3 1 3 2 2 3 3 3 3 4 4ˆ ( ) ( ) ( )θ θ θ θ= + + + +E ε ε ε ε ε  (7) 

 The second assumption for the shell model asserts that: “quadratic and higher-order terms of 
Ê , underlined in equation (7), are negligible”. Then, we arrive to the following decomposition 

  
0 (0) (0) 3 3 (0) 3 3

3 33

1 (1) (1) 3 3 (1) 3 3
3 33

( )

( )

α β α α
αβ α

α β α α
αβ α

ε ε ε

ε ε ε

= ⊗ + ⊗ + ⊗ + ⊗

= ⊗ + ⊗ + ⊗ + ⊗

ε a a a a a a a a

ε a a a a a a a a
 (8) 

where ( ) ( )
3,i i

αβ αε ε  and ( )
33

iε  are functions of the triple( ), ,u ψϕ . After some manipulations we can 
write them in terms of the seven components of the displacement field (Habip, 1965), i.e. 

  

(

)

(

(0)
| | 3 | | 3 | 3 |

2
3 3, 3, 3, 3,

(1)
| | 3 | | 3 | |

| | 3 | 3 |

1 2
2

( )

1 2 2
2

u u b u a u u b u u b u u

c u u u b u u b u u b b u u

b b u b u c u a u

a u b u b u b

λγ λ λ
αβ α β β α αβ λ α γ β β λ α α λ β

λ λ λ γ
αβ α β α λ β β λ α α β λ γ

λ λ λγ
αβ α β β α αβ β λ α α λ β αβ λ α γ β

λγ λ λ
λ β γ α β λ α α λ β

ε

ε ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

= + − + − −

+ + + + +

= + − − − + +

+ − − −

)

( )

3 | 3 | 3 3

3, 3, 3, 3, 3, 3, 3, 3,

(0)
3 3, | 3 3 3, 3

(1)
3 3, | 3 3, 3 3,

2

1
2
1 2
2

u b u c u

u u b u b u b u b u

b b u b b u

u b u a u b u u b u

a u

λ λ
β λ α α λ β αβ

λ λ λ λ
α β β α α λ β β λ α α λ β β λ α

λ γ λ γ
α β λ γ β α λ γ

λ λγ λ λ
α α α α λ λ α γ α λ α α λ

λγ
α α λ α γ α α

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

ε ϕ ϕ ϕ ϕ ϕ

ε ϕ ϕ ϕ ϕ ϕ ψ

− +

+ + + + + +

+ +

= + + + − + +

= + + +( )

( )
( )

3

(0) 2
33 3 3

(1)
33 3 3 3

2

1 2 ( )
2
2

b u

a

λ
α λ

λγ
λ γ

ψ

ε ϕ ϕ ϕ ϕ

ε ψ ϕ ψ

+

= + +

= +  (9) 

where c b bμ
αβ αμ β=  is the covariant third fundamental form of the reference surface. Note that the 

component (1)
33ε  vanishes when 3 0ψ =  (6-parameter formulation). 

 The second Piola-Kirchhoff stress tensor is used for the Lagrangian formulation and is 
energetically-conjugate to the rate of Green strain tensor E�  (Reddy, 2004). Like E , the second 
Piola-Kirchhoff stress tensor S  is transformed to the midsurface RM  by 

  ( )1ˆ T Φ− − ∗= =S μ Sμ S  (10) 

which is the pull-back operator of the contravariant tensor S . 
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 Let nM  denote the stress resultant tensor which is a symmetric tensor. The tensor nM  is 
defined as 

  
/ 2

0 1 3 3

/ 2
ˆ, 1,

h

h
dθ μ θ

−
⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫M M S  (11) 

The scalar quantity μ  is the determinant of the shifter tensor μ . The stress resultant tensors are 
also energetically-conjugate to the strain resultants iε . The stress resultant tensors may be 
decomposed in component form as 

  

(0) (0) (0)
0 3 33

3 3 3 3

(1) ( ) ( )1 1
1 3 33

3 3 3 3

( )

( )

N Q T

N Q T

αβ α
α β α α

αβ α
α β α α

= ⊗ + ⊗ + ⊗ + ⊗

= ⊗ + ⊗ + ⊗ + ⊗

M a a a a a a a a

M a a a a a a a a  (12) 

where 
( ) ( )

3,
n n

N Qαβ α  and 
( )

33
n

T  are membrane, shear and stretching components, respectively. 

1.3.  Functionally Graded Shells 

In this section we consider a hyperelastic and inhomogeneous shell. The shell structure can 
undergo large deformations (rotations and displacements) while the material response remains in 
the elastic regime. We also consider the relation between the second Piola-Kirchhoff stress 
tensor S  and the Green strain tensor E  is linear. It implies that 

  = ⋅S EC  (13) 
where C  is the fourth-order elasticity tensor. The tensor C  is represented in convected 
coordinates as 

  ijkl
i j k lC= ⊗ ⊗ ⊗g g g gC  (14) 

where the components of C  satisfy the following symmetry conditions 

  ijkl jikl ijlk klijC C C C= = =  (15) 
 Functionally graded materials (FGMs) are a special kind of composites in which the material 
properties vary smoothly and continuously from one surface to the other. These materials are 
microscopically inhomogeneous and are typically made from isotropic components. One of the 
main advantages of FGMs is that it mitigates severe stress concentrations and singularities at 
intersections between interfaces usually presented in laminate composites due to their abrupt 
transitions in material compositions and properties. Applications of FGMs are extensive 
especially in high-temperature environments such as nuclear reactors, chemical plants and high-
speed spacecrafts. 
 The materials in the bottom and top surfaces are usually metal and ceramic respectively (Fig. 
2). Material properties at a point X  are given by a combination between metal and ceramic 
constituents, i.e. by the weighted average of the moduli of the constituents, namely 

  ( )3
c c m mf fϖ θ ϖ ϖ= +  (16) 

where the subscripts m and c refer to the metal and ceramic constituents and f is the volume 
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fraction of the phase. The symbol ϖ  denotes a generic material property. 
 

3θFully ceramic shell

Fully metal shell

1θ

2θ

 

Fig. 2. Functionally graded shell. 
  
 
 The volume fractions of the ceramic cf  and metal mf  corresponding to the power law are 
expressed as (Reddy, 2000; Praveen and Reddy, 1998; Reddy and Chin, 1998)  

  1 , 1
2

n

c m c
zf f f
h

⎛ ⎞⎟⎜= + = −⎟⎜ ⎟⎜⎝ ⎠
 (17) 

where n is the volume fraction exponent which takes values greater than or equal to zero. The 
value of n equal to zero represents a fully ceramic shell. Conversely, we have a fully metal shell 
as n tends to infinity (Fig. 3). 

 
Fig. 3. Variation of the volume fraction function cf  through the dimensionless thickness for 

different values of power-law index n . 
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 The components of the elasticity tensor ( )3ijklC θ  are functions of the thickness coordinate. 
They can be written in terms of the convected base vectors as 

  ( )3ijkl
i j k lC θ= ⊗ ⊗ ⊗g g g gC  (18) 

which can be arranged in a matrix [ ] 6 6ijklC ×∈M  such that 

  [ ]

1111 1122 1133

1122 2222 2233

1133 2233 3333

2323

1313

1212
6 6

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ijkl

C C C
C C C
C C C

C
C

C
C

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (19) 

 The components ijklC  at each 3θ  are functions of only two independent variables. then 

  

( )

( )

( )

3
1111 2222 3333

3
1122 1133 2233

3
1212 1313 2323

(1 )
(1 )(1 2 )

(1 )(1 2 )

2(1 )

E
C C C

E
C C C

E
C C C

θ ν
ν ν
θ ν

ν ν
θ
ν

−
= = =

+ −

= = =
+ −

= = =
+

 (20) 

where ( )3
c c m mE E f E fθ = + . The Poisson’s ratio ν  is considered constant through the thickness. 

Hence 

  
( )3ijkl ijkl ijkl

c c m m

ijkl ijkl
cm c m

C C f C f

C f C

θ = +

= +
 (21) 

where ijkl ijkl ijkl
cm c mC C C= −  and cf , mf  are given in (17). 

1.4.  Weak Formulation 

The finite element framework is based on the principle of virtual work. Our analysis is restricted 
to static cases. The virtual work statement is nothing but the weak form of the equilibrium 
equations and it is valid for linear and nonlinear stress-strain relations (Reddy, 2002). 
 The abstract configuration solution of the shell is denoted by the set 

  ( ){ }2 3 3, , :Φ Φ= ≡ ∈ → × ×uC A \ \ \ϕ ψ R  (22) 

where A  is the parametric space of the midsurface. Note that Φ∈C  contains the same 
amount of three-dimensional information as Eq. (2) to locate at any time arbitrary points in the 
three-dimensional shell. 
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 We express the weak formulation as 

  ( ) ( ) ( )int ext, , , 0δ δ δΦ Φ Φ Φ Φ Φ= + =G G G  (23) 

where 

  ( ) 0 0 1 1
int , ( )

R

dδ δ δΦ Φ Ω= ⋅ + ⋅∫ M ε M ε
M

G  (24) 

  
( )ext , ( )

( )

R

R

s s s

d

ds

δ δ δ δ

δ δ δ

Φ Φ Ω

∂

=− ⋅ + ⋅ + ⋅

− ⋅ + ⋅ + ⋅

∫

∫

p u l k

p u l k

M

M

G ϕ ψ

ϕ ψ
 (25) 

 For hyperelastic materials, the static part of the weak form of the equilibrium equations is the 
first variation of an elastic potential energy function. This statement is known as the principle of 
minimum total potential energy (Reddy, 2002). We define the elastic potential function 

( ):Π →CD \  as 

  
( ) 0 ( )

( )

R R

R

s s s

dV d

ds

ρΠ Φ Ψ Ω

∂

= − ⋅ + ⋅ + ⋅

− ⋅ + ⋅ + ⋅

∫ ∫

∫

p u l k

p u l k

B M

M

ϕ ψ

ϕ ψ
 (26) 

 The first variation of the potential energy is given by 

  ( ) ( ) ( )[ ], , 0Dδ δ δ δΦ Φ Π Φ Φ Π Φ Φ= = =G  (27) 

 To solve the nonlinear equations is to use the incremental/iterative method of Newton-
Raphson. This procedure requires a linearization of the weak form generating recurrence update 
formulas. The linearization process relies on the concept of directional derivatives (Hughes and 
Pister, 1978; Bonet and Wood, 1997). We assume that the external forces are conservative 
(independent of Φ ). Applying that procedure to equation (23) we obtain 

  ( ) ( ) ( )[ ] ( ), ; , ,D oδ δ δΦ Φ ΔΦ Φ Φ Φ Φ ΔΦ ΔΦ= + +LG G G  (28) 

where the underlined term is called consistent tangent operator. Furthermore, we can write the 
tangent operator as 

  ( )[ ] ( ), ,D δ δΦ Φ ΔΦ Φ Φ ΔΦ=∇ ⋅G G  (29) 

since δΦ  remains constant during the increment ΔΦ . 
 The iterative solution procedure goes as follows: given a configuration kΦ ∈C , 
corresponding to iteration k, solve the linearized system 

  ( ) ( ), , 0k k kδ δΦ Φ Φ Φ ΔΦ+∇ ⋅ =G G  (30) 

where kΔΦ  is the incremental change in the configuration of the shell. This increment is used to 
update the shell configuration 1k kΦ Φ +→ ∈C . Namely 

  1k k kΦ Φ ΔΦ+ = +  (31) 
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Notice that the use of the triple ( ), ,u ϕ ψ  preserves the additive structure of the configuration 
update of the shell. 
 The consistent tangent operator is decomposed in two parts: the material tangent operator and 
the geometric tangent operator. Thus 

  ( )[ ] ( )[ ] ( )[ ], , ,m gD D Dδ δ δΦ Φ ΔΦ Φ Φ ΔΦ Φ Φ ΔΦ= +G G G  (32) 

The contribution of the external forces vanishes because they are conservative. The first term 
which is the material part is given by 

  ( )[ ] [ ]
1

0

, ( )
R

n n
m

n

D D dδ δΦ Φ ΔΦ ΔΦ Ω
=

= ⋅∑∫ M ε
M

G  (33) 

and the geometric part by 

  ( )[ ] [ ]
1

0

, ( )
R

n n
g

n

D D dδ δΦ Φ ΔΦ ΔΦ Ω
=

= ⋅∑∫ M ε
M

G  (34) 

 The material part of the tangent operator results from the directional derivative of the stress 
resultants. After some manipulations we obtain 

  ( )[ ]
1 2

3 3

20

ˆ( )
h

i i j j

hj

D dμ θ θΦ ΔΦ Δ+

−=

= ⋅∑∫M εC  (35) 

where Ĉ  is the pull-back of the contravariant fourth-order elasticity tensor C . Substituting (35) 
into (33) we arrive to 

  ( )[ ]
1 1

( )

0 0

, ( ) ,
R

i i j j
m

i j

D dδ δΦ Φ ΔΦ Δ Ω+

= =

= ⋅ ⋅∑∑∫ ε ε
M

G B  (36) 

where jΔε  is can be easily calculated. The components of the fourth-order tensor ( )kB  are the 
material stiffness coefficients of the shell and are defined as 

  
2

( ) 3 3

2
ˆ( ) , 0,1,2

h
k k

h
d kμ θ θ

−
= =∫B C  (37) 

and are computed by Gauss integration. 
 The computation of virtual internal energy intG  and the tangent operator is not a trivial task. 
Even for isotropic materials these expressions have an extremely complex form when 
displacements and rotations are large. 
 Next, the finite element equations are obtained by interpolating the covariant components of 
the kinematic variables in terms of the base vectors αa . Namely  

  
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 1

( ) ( ) 3
3

1

, , ,

,

m m
hp j j i hp j j i

i i
j j

m
hp j j

j

u N N

N

ξ η ϕ ξ η

ψ ξ η

= =

=

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= =⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∑ ∑

∑

u θ a θ a

θ a

ϕ

ψ
 (38) 
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where ( )( ) ( ) ( )
3, ,j j j

i iu ϕ ψ  denote the nodal values of the kinematic variables. 
 We then arrive to a system of highly nonlinear algebraic equations which can be written in 
matrix form by means of the stiffness and tangent matrices. The solution is carried out by 
subroutines written in FORTRAN. 

1.5.  Numerical Examples 

In this section, numerical results obtained by the model developed herein are presented for shell 
structures. Typical benchmark problems for isotropic and homogeneous shells are investigated 
for bending behavior of their counterparts functionally graded shells. 
 Regular meshes of Q25, Q49 and Q81 high-order elements with seven degrees of freedom 
per node were utilized in the finite element analysis (see Table 1). By increasing the p level or 
refining the finite element mesh, we mitigate locking problems. Full Gauss integration rule is 
employed in all examples. 

 
Table 1. Number of degrees of freedom per element for different p levels 
Element p level FSDT (DOF) 

Q4 1 28 
Q9 2 63 

Q25 4 175 
Q49 6 343 
Q81 8 567 

 

Roll-up of a functionally graded plate strip 

We consider a FGM plate strip subjected to a bending distributed moment on the other end (Fig. 
4). The isotropic and homogeneous counterpart has been considered Simo et al. (1990) as well as 
Betsch et al. (1998). This problem is good to test the capability of the finite element model to 
simulate large rotations on shells. 
 
 

 
Fig. 4. Cantilever FGM plate strip under end bending moment. 

 

h

L
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M

1θ

3θ
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 The material properties and geometry of the plate are 

  

9 9

REF

0.7 10 , 1.51 10 , 0.3
12.0, 1.0, 0.1

65886.17926

m cE E
L b h
M

ν= × = × =

= = =
=

 

Figures 5 and 6 depict tip displacements of the cantilever strip plate versus the end bending 
moment for various volume fraction exponents n (from fully ceramic to fully metal). We utilize a 
regular mesh of 1×8Q25 elements for the finite element discretization. The Newton method 
exhibits a good rate of convergence until some displacement level and then it diverges (for 
inhomogeneous shell cases). It is not clear for the authors why this problem happens. It seems 
that for these cases we do not have real solutions. However, before arriving to any conclusion 
further studies are needed. 

 

Fig. 5. Tip-deflection 1u< >−  vs. end moment M for the FGM plate strip. 

 
 Figure 7 shows the undeformed and deformed configuration of a FGM strip plate for various 
load stages and 1.0n = . The plate shows large rotations beyond 180° with deformed 
configurations similar to the homogeneous case. 

Annular FGM plate under end shear force 

We analyze an annular FGM plate subjected to a distributed transverse shear force (Fig. 8). This 
benchmark problem was considered for homogeneous and isotropic plates by Büchter and Ramm 
(1992) and Sansour and Kollmann (2000); and for multilayered composites by Arciniega and 
Reddy (2006). The material properties are the same as the last example and will be used in all 
examples. The geometric quantities are given by 

REFM M
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  6, 10, 0.03i eR R h= = =  

for a maximum distributed force of max 20.0q = . 

 

Fig. 6. Tip-deflection 3u< >  vs. end moment M for the FGM plate strip. 

 
Fig. 7. Deformed configurations of a FGM plate (n = 1.0) under end bending moment (load 

values REF 0.075,0.15, ,0.6,0.625M M = … ). 
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Fig. 8. Annular FGM plate strip under transverse end shear force. 

 The plate is modeled by polar coordinates. A regular mesh of 1×5Q49 elements (p level 
equal to 6) is used in the present analysis. Computation is performed by the Newton-Raphson 
method with 80 load steps and convergence tolerance for the residual forces of 41.0 10−× . 
 The shear load versus displacement curves for two characteristic points are depicted in 
Figures 9 and 10. The deformed configurations of a FGM annular plate for various load levels 
and 2.0n =  is shown in Fig. 11. It is clear that the plate undergoes large displacements at the 
corresponding loading of 80F = . 

Fig. 9. Transverse displacement curves at point A vs. shear force 4F q=  of the cantilever 
annular plate strip. 

F

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12
Deflection at point A

Ceramic

n = 0.2

n = 0.5

n = 1.0

n = 2.0

n = 5.0

Metal

q

1θ

B

Ri

Re

h

A

3θ

2θ



 16

 

Fig. 10. Transverse displacement curves at point B vs. shear force 4F q=  of the cantilever 
annular plate strip. 

 
Fig. 11. Deformed configurations of a FGM plate strip (n = 2.0) under transverse end shear 

force (load values 10,20, ,80F = … ). 
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Pull-out of a functionally graded cylindrical shell 

The functionally graded cylindrical shell with free ends is subjected to two opposite loads (Fig. 
12). The homogeneous case was considered by Brank et al. (1995) and Sansour and Kollmann 
(2000), among others. The following geometrical data is used in the analysis 

  10.35, 4.953, 0.094L R h= = =  
 An octant of the shell is modeled using 2×2 Q81 elements which is enough to overcome 
locking problems. The Newton-Raphson method with 80 load steps is utilized with equal load 
steps of 60000. The adopted error tolerance for the residual was 1.0×10-5. 
 

 

Fig. 12. Pull-out of a FGM cylinder with free edges. 

 Figures 13 to 15 show the radial displacements at points A, B and C of the shell, respectively. 
Convergence rates for this example are quite good (3 to 5 iterations per load step). As expected, 
bending response of FGM cylinders lies in between of the fully ceramic and fully metal shells. 
The deformed configurations for a FGM cylindrical shell is depicted in Fig. 16 for 65.1 10P = ×  
and 1.0n = . 
 

FGM hemisphere under internal pressure 

The last example considered is a cylindrical FGM shell under internal pressure (Fig. 17). This is 
not a following loading (independent of the displacements).The cylinder has fixed boundary 
conditions on both ends. The geometric data is as follows: 

  20.0, 5.0, 0.01a R h= = =  
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Fig. 13. Radial displacements at point A 3( )u< >  vs. pulling force of a FGM cylinder with free 
edges. 

 

 
Fig. 14. Radial displacements at point B 3( )u< >−  vs. pulling force of a FGM cylinder with free 

edges. 
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Fig. 15.  Radial displacements at point C 3( )u< >−  vs. pulling force of a FGM cylinder with free 
edges. 

 

 

Fig. 16. Deformed configurations of the FGM cylinder under pulling forces. Load 65.1 10P = ×  
( 1.0n = ). 
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FGM hemisphere under internal pressure 

The last example considered is a cylindrical FGM shell under internal pressure (Fig. 17). The 
cylinder has fixed boundary conditions on both ends. The geometric data is as follows: 

20.0, 5.0, 0.01a R h= = =  

 
Fig. 17. FGM cylindrical shell under internal pressure. 

 
 A regular mesh of 2×2Q81 elements is used in the analysis. We take advantage of the 
symmetry of the shell and only an octant of the shell is considered as the computational domain. 
Figure 18 shows the radial deflections at the central point versus the internal pressure for FGM 
cylinders. We notice that FGM cylinders with low values of n exhibit stiffer response than those 
with high volume fraction exponent (more metal than ceramic). The final configuration of a 
FGM cylinder for 5.0n =  is depicted in Fig. 19. 

 

Fig. 18. Radial deflection at A vs. pressure load ( 610Q q= ) of a FGM cylindrical shell. 
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Fig. 19. Deformed configuration of a FGM cylindrical shell. Loading 63.6 10q = ×  (n = 5.0). 

1.6.  Conclusions 

In this paper we present a large deformation analysis for functionally graded shells. We consider 
a through-the-thickness variation of the material properties of the FGM shell which is made of 
two isotropic constituents. The gradation of properties through the thickness is assumed to be of 
the power law type. A tensor-based finite element model is developed for geometric nonlinear 
analysis of the shell. This approach showed to be reliable and efficient. The derived first-order 
shell theory with seven parameters with exact nonlinear deformations is consistent and simple. It 
incorporates thickness changes in the model, and then full 3D constitutive equations are utilized. 
A family of High-order Lagrangian elements was introduced to avoid membrane and shear 
locking for shells. We found that the nonlinear bending response of FGM shells under 
mechanical loading lies between that of ceramic and metal shells, as expected. The patterns of 
load-displacement equilibrium curves of FGM shells are similar to those of isotropic and 
homogeneous counterparts. Numerical examples for plates and cylindrical shells, presented 
herein, illustrate the validity of the present approach and the developed formulation for FGM 
shells. 
 
 
 
 
 
 
 
 
 
 
 

X Y

Z

X Y

Z



 22

1.7.  References for Section 1 

Arciniega, R.A., Reddy, J.N., 2005. Consistent third-order shell theory with application to 
composite circular cylinders. AIAA J. 43 (9), 2024-2038. 

Arciniega, R.A., Reddy, J.N., 2006. Tensor-based finite element formulation for geometrically 
nonlinear analysis of shell structures. Comput. Methods Appl. Mech. Engrg. 

Balah, M., Al-Ghamedy, H.N., 2002. Finite element formulation of a third-order laminated finite 
rotation shell element, Comput. Struct. 80, 1975-1990. 

Başar, Y., Ding, Y., Schultz, R., 1993. Refined shear-deformation models for composite 
laminates with finite rotations. Int. J. Solids Struct. 30 (1993) 2611-2638. 

Betsch, P., Menzel, A., Stein, E., 1998. On the parametrization of finite rotations in 
computational mechanics: A classification of concepts with application to smooth shells. 
Comput. Methods Appl. Mech. Engrg. 155, 273-305. 

Bischoff, M., Ramm, E., 1997. Shear deformable shell elements for large strains and rotations. 
Int. J. Numer. Meth. Engrg. 40, 4427-4449. 

Bonet, J., Wood, R.D., 1997. Nonlinear Continuum Mechanics for Finite Element Analysis. 
Cambridge University Press, Cambridge. 

Brank, B., Perić, D., Damjanić, F.B., 1995. On implementation of a four node shell element for 
thin multilayered elastic shells. Comput. Mech. 16, 341-359. 

Büchter, N., Ramm, E., 1992. Shell theory vs. degeneration - A comparison in large rotation 
finite element analysis. Int. J. Numer. Meth. Engrg. 34, 39-59. 

Della Croce, L., Venini, P., 2004. Finite elements for functionally graded Reissner-Mindlin 
plates. Comput. Methods Appl. Mech. Engrg. 193, 705-725. 

Green, A.E., Zerna, W., 1968. Theoretical Elasticity. Clarendon Press, 2nd edition, Oxford. 
Habip, L.M., 1965. Theory of elastic shells in the reference state. Arch. Appl. Mech. 34, 228-237. 
Harte, R., Eckstein, U., 1986. Derivation of geometrically nonlinear finite shell elements via 

tensor notation. Int. J. Numer. Meth. Engrg. 23, 367-384. 
Hughes, T.J., Pister, K.S., 1978. Consistent linearization in mechanics of solids and structures. 

Comput. Struct. 8, 391-397. 
Koizumi, M., 1997. FGM activities in Japan. Compos. Part B: Engrg. 28B, 1-4. 
Ma, L.S., Wang, T.J., 2003. Nonlinear bending and postbuckling of functionally graded circular 

plates under mechanical and thermal loadings. Int. J. Nonlinear Mech. 40, 3311-3330. 
Na, K.S., Kim, J.H., 2005. Nonlinear bending response of functionally graded plates under 

thermal loads. J. Thermal Stresses 29, 245-261. 
Naghdi, P.M., 1963. Foundations of elastic shell theory. In: Progress in Solid Mechanics, Vol. 4. 

North-Holland, Amsterdam. 
Naghdi, P.M., 1972. Theory of shells and plates. In: Handbuch der Physik, VIa/2, Springer-

Verlag, Berlin. 
Pietraszkiewicz, W., 1979. Finite Rotations and Lagrangean Description in the Nonlinear 

Theory of Shells. Polish Scientific Publishers, Warszawa. 
Praveen, G.N., Reddy, J.N., 1998. Nonlinear transient thermoelastic analysis of functionally 

graded ceramic-metal plates. Int. J. Solids Struct. 35, 4457-4476. 
Reddy, J.N., 2000. Analysis of functionally graded plates. Int. J. Numer. Meth. Engrg. 47, 663-

684. 
Reddy, J.N., 2002. Energy Principles and Variational Methods in Applied Mechanics, 2nd 

edition, JohnWiley & Sons Inc., New York. 



 23

Reddy, J.N., 2004. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. 
2nd ed., CRC Press, Boca Raton, Florida. 

Reddy, J.N., Chin, C.D., 1998. Thermomechanical analysis of functionally cylinders and plates. 
J. Thermal Stresses 21, 593-626. 

Reddy, J.N., Arciniega, R.A., 2004. Shear deformation plate and shell theories: From Stavsky to 
present. Mech. Advanced Mater. Struct. 11, 535-582. 

Reddy, J.N., Arciniega, R.A., 2006a. Mechanical and thermal buckling of functionally graded 
ceramic-metal plates. In: Analysis and Design of Plated Structures: Stability. Woodhead 
Publishing, Cambridge, UK. 

Reddy, J.N., Arciniega, R.A., 2006b. Free Vibration Analysis of Functionally Graded Plates. In: 
Analysis and Design of Plated Structures: Dynamics. Woodhead Publishing, Cambridge, 
UK. 

Sansour, C., 1995. A theory and finite element formulation of shells at finite deformations 
involving thickness change: Circumventing the use of a rotation tensor. Arch. Appl. Mech. 
65, 194-216. 

Sansour, C., Kollmann, F.G., 2000. Families of 4-nodes and 9-nodes finite elements for a finite 
deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced 
strain elements. Comput. Mech. 24, 435-447. 

Simo, J.C., Fox, D.D., Rifai, M.S., 1990. On a stress resultant geometrically exact shell model. 
Part III: Computational aspects of the nonlinear theory. Comput. Methods Appl. Mech. 
Engrg. 79, 21-70. 

Vu-Quoc, L., Tan, X.G., 2003. Optimal solid shells for nonlinear analyses of multilayered 
composites. I. Statics. Comput. Methods Appl. Mech. Engrg. 192, 975-1016. 

Woo, J., Meguid, S.A., 2001. Nonlinear analysis of functionally graded plates and shallow shells. 
Int. J. Solids Struct. 38, 7409-7421. 

Yamanouchi, M., Koizumi, M., Hirai, T., Shiota, I., 1990. Proceeding for the First International 
Symposium of Functionally Graded Materials. Japan. 

Yang, J., Shen, H.S., 2003a. Nonlinear bending analysis of shear deformable functionally graded 
plates subjected to thermomechanical loads under various boundary conditions. Compos. 
Part B: Engrg. 34, 103-115. 

Yang, J., Shen, H.S., 2003b. Nonlinear analysis of functionally graded plates under transverse 
and in-plane loads. Int. J. Nonlinear Mech. 38, 467-482. 



 24

2. MIXED LEAST-SQUARES FINITE ELEMENT MODELS FOR 
STATIC AND FREE VIBRATION ANALYSIS OF PLATES 

 
 

2.1. Introduction 
 
Finite element models for the analysis of multilayered composite plate and shell structures have 
been widely developed in the last few decades. In overview, the main approaches to establish 
plate and shell theories have been in the framework of the so called axiomatic theories. The 
formulations differ in equivalent single-layer or layerwise variable descriptions and also in the 
choice for the unknown variables, resulting in displacement, stress or mixed formulations [1-3]. 
Traditionally, variational principles have been established to derive governing equations 
consistent with the chosen formulations. The widespread displacement formulations usually 
relate to the well-known principle of virtual displacement and the alternative mixed formulations 
typically derive from the Hu-Washizu or the Hellinger-Reissner variational principles [4,5]. 
Naturally, classical finite element models that were originally developed for one-layered 
isotropic structures were extended in a straightforward manner to multilayered plates and shells 
[6,7]. The classical lamination theory (CLT), first-order shear deformation theory (FSDT) and 
high-order theories have been known to provide a sufficiently accurate description of the global 
response of multilayered structures, as long as thin to moderately thick. Understandably, for a 
detailed response of individual layers or local phenomena description one must use layerwise 
theories (LWT) or the so called zig-zag theories that were indeed entirely originated and devoted 
to layered structures. In fact, one crucial issue for these theories is the fulfilment of the Cz

0-
requirements. Basically, this means that displacements and transverse stresses must be C0-
continuous functions in the thickness direction due to interlaminar compatibility and equilibrium 
reasons. 

The motivation for the proposed finite element models comes from earlier works on 
mixed finite element formulations based on least-squares variational principle. Namely, works 
by Pontaza and Reddy [8], Pontaza [9] and also, Duan and Lin [10]. Overall, the least-squares 
finite element formulations have shown promising theoretical and computational advantages, 
both in fluid and in solid mechanics. Specifically, Pontaza and Reddy [8] developed a mixed 
model based on least-squares formulation for the bending of single-layered isotropic plates, 
using the classical plate theory and first-order shear deformation theory. The prospect of 
extending this model gave rise to the proposed mixed least-squares FSDT model for static 
analysis of laminated composite plates. Then, a pioneer attempt to use least-squares formulation 
in modal analysis led to the development of the mixed least-squares FSDT finite element model 
for free vibration analysis of laminated composite plates. 

The least-squares formulations as any weighted residual formulation provide an 
alternative approach to the weak form finite element models, both displacement-based and 
mixed. In the framework of FSDT weak form models, displacement formulations are known to 
encounter computational difficulties when modelling thin plates. The finite elements become 
excessively stiff, which results in an erroneous underprediction of displacements in static 
analysis or else in a severe overprediction of frequencies in free vibration analysis. This 
phenomenon is known as shear-locking. In essence, it is due to the inability of shear deformable 
elements to accurately model bending within an element under a state of zero transverse shearing 
strain. Higher-order elements experience relatively less locking, but sometimes at the expense of 
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a slower convergence. Usually shear-locking problems are only avoided by numerical integration 
techniques. Another possibility is mixed formulations, where in addition to generalized 
displacements the stress resultants are also used as independent variables [11,12]. Mixed finite 
element models based on weak formulations need however, that the finite element approximation 
spaces satisfy a so called Inf-Sup condition, in order to be consistent models [13]. This fulfilment 
is in general known to be rather difficult to prove analytically. Furthermore, mixed weak form 
models yield symmetric but not positive-definite stiffness matrices, adding numerical complexity 
to the models. Alternatively, within weighted residual formulations, least-squares finite element 
models are distinctive for being solely based on the idea of minimizing the error introduced in 
the approximation of the governing equations. Then, the benefit of using least-squares variational 
principle along with mixed formulations is that it leads to a variational unconstrained 
minimization problem, where the finite element approximation spaces can be chosen 
independently. Therefore, stability requirements such as the Inf-Sup condition never arise. This 
is precisely the theoretical merit of mixed least-squares formulations as it was demonstrated in 
the aforementioned works on this matter [8-10]. 

The proposed mixed least-squares finite element models consider the FSDT with 
generalized displacements and stress resultants as independent variables, using equal-order 
interpolation, for either static or free vibration analysis of laminated composite plates. 
Specifically, high-order C0 basis functions and full integration are used to develop the discrete 
finite element models, since it was established to be the appropriate way to truly minimize the 
least-squares functional. In fact, Pontaza and Reddy [8] and later Pontaza [9] demonstrated the 
exponential decay of the least-squares functional with increasing order of the element. 
Furthermore, the mixed least-squares model for static analysis uses the classical C0 Lagrange 
basis functions, whereas the model for free vibration analysis developed later uses instead C0 
interpolant polynomials of Gauss-Lobatto-Legendre quadrature points, which are more suitable 
basis functions for high-order elements [14]. Both mixed least-squares discrete models, once the 
boundary conditions are properly imposed, yield a symmetric and positive-definite stiffness 
matrix. This is another benefit of mixed least-squares models as opposed to mixed weak form 
models, which is computationally preferable. Most interestingly, the pioneer mixed least-squares 
model for free vibration analysis yields a quadratic eigenvalue problem with symmetric matrices, 
which is rather atypical within conservative systems. Ultimately, both proposed models exhibit 
excellent predictive capabilities in the framework of the FSDT as demonstrated by numerical 
examples presented hereafter. In particular, it is also shown that both least-squares models based 
on high-order basis functions are insensitive to shear-locking. 

This report is outlined as follows. It starts by introducing the governing equations 
consistent with the mixed FSDT finite element models for both static and free vibration analysis 
of laminated composite plates. Then, the proposed models are derived from the least-squares 
formulation and related finite element specifics are addressed. Selected numerical examples are 
presented to assess the predictive capabilities of the mixed least-squares models through static 
and free vibration analysis of four laminated composite plates with different boundary conditions 
and various side-to-thickness ratios. Lastly, the overall conclusions are discussed.  
 
2.2 Governing Equations 
 
Consider a laminated composite plate of total thickness h and composed of N orthotropic layers, 
as shown in Fig. 1. Typically, the layers are unidirectional fibre-reinforced laminas whose in-
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plane material coordinate axes are parallel and transverse to the fibres direction. Thus, the 
orientation of the kth layer is defined by an angle θk between the plate coordinate x and the fibres 
direction. In the xy-plane, Ω  represents the undeformed midplane of the plate and Ω  the open 
bounded region with the boundary ΩΓ ∂= . The z-axis is taken positive upward from the 
midplane. Specifically, the kth layer is located between the interfaces kzz =  and 1+= kzz  in the 
thickness direction. 
 

 
Figure 1. Notations for a laminated composite plate. 

 
As previously mentioned, the adopted mixed formulation uses the generalized displacements and 
stress resultants as independent variables. Accordingly, for static analysis of laminated 
composite plates under a transverse load q(x,y), the governing equations by the FSDT are the 
following (see Reddy [7]): 
 

0T =∂ Nε  in Ω  (1) 
0=+⋅∇ qQ  in Ω  (2) 
0T =−∂ QMε  in Ω  (3) 

0=∂−∂− ΦBuAN εε  in Ω  (4) 
0=∂−∂− ΦDuBM εε  in Ω  (5) 

( ) 0ˆ =+∇− ΦAQ w  in Ω  (6) 
 
For free vibration analysis, the loads are set to zero and the variables assume a periodic solution 
in time, with a frequency ω. Hence, the governing equations by the FSDT for free vibration 
analysis of laminated composite plates are in turn, as follows (see Reddy [7]): 
 

01
2

0
2T =++∂ ΦuN IIε ωω  in Ω  (7) 

00
2 =+⋅∇ wIωQ  in Ω  (8) 

02
2

1
2T =++−∂ ΦuQM IIε ωω  in Ω  (9) 

0=∂−∂− ΦBuAN εε  in Ω  (10) 
0=∂−∂− ΦDuBM εε  in Ω  (11) 

( ) 0ˆ =+∇− ΦAQ w  in Ω  (12) 
 
For convenience, a compact notation is applied here which proves to be rather useful to develop 
the least-squares functional afterwards. Overall, for static analysis the governing equations 
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include the plate equilibrium equations in Eqs. (1)-(3) and the laminate linear constitutive 
equations in Eqs. (4)-(6), while for free vibration analysis the governing equations include the 
plate equations of periodic motion in Eqs. (7)-(9) and the same laminate constitutive equations 
repeated in Eqs. (10)-(12), all written in terms of the independent variables. Specifically, in the 
current notation, the in-plane displacements u, the transverse deflection w, the rotations Φ, the 
in-plane force resultants N, the moment resultants M and the transverse force resultants Q, are 
assumed to be in the form specified below: 
 

[ ]T
00 vu=u , [ ]T

xyyyxx NNN=N  (13a) 

0ww = , [ ]T
xyyyxx MMM=M  (13b) 

[ ]T
yx φφ=Φ , [ ]T

yx QQ=Q  (13c) 
 
In addition, the form of the differential operator used repeatedly in the previous governing 
equations is given by: 
 

⎥
⎦

⎤
⎢
⎣

⎡
∂∂∂∂
∂∂∂∂

=∂
xy
yx

ε 0
0T  (14) 

 
In the laminate constitutive equations, equally written in Eqs. (4)-(6) and in Eqs. (10)-(12), a 
matrix form for the laminate stiffnesses is considered as follows: 
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⎥
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Here, Aij are called the extensional stiffnesses, Dij the bending stiffnesses and Bij the bending-
extensional coupling stiffnesses. The factor K represents the shear correction coefficient, which 
takes the standard value 5/6 in the later numerical examples. Specifically, the laminate 
stiffnesses Aij, Bij and Dij are in turn defined in terms of the lamina stiffnesses, i.e. the lamina 
plane-stress reduced stiffnesses transformed to the xy-plane of the laminate, as shown (see Reddy 
[7]): 
 

( ) ( )∑
=

+ −=
N

k
kk

k
ijij zzQA

1
1  (16a) 

( ) ( )∑
=

+ −=
N

k
kk

k
ijij zzQB

1

22
12

1   (16b) 

( ) ( )∑
=

+ −=
N

k
kk

k
ijij zzQD

1

33
13

1  (16c) 
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Furthermore, the mass moments of inertia Ii introduced in the plate equations of periodic motion 
in Eqs. (7)-(9) are defined in terms of the laminas density, as also shown: 
 

( ) ( )∑
=

+ −=
N

k
kk

k zzI
1

100 ρ  (17a) 

( ) ( )∑
=

+ −=
N

k
kk

k zzI
1

22
101 2

1 ρ  (17b) 

( ) ( )∑
=

+ −=
N

k
kk

k zzI
1

33
102 3

1 ρ  (17c) 

 
For completeness, the proper boundary conditions for all possible support types used in a 
rectangular laminated composite plate, as illustrated in Fig. 1, are now specified: 
 

:,0 ax =  000 ===== xxxxy MNwv φ  on S1Γ  (18a) 
 000 ===== xxxyy MNwu φ  on S2Γ  (18b) 
 0===== xxyxxxyxx QMMNN  on FΓ  (18c) 
 0000 ===== yxwvu φφ  on CΓ  (18d) 

:,0 by =  000 ===== yyyyx MNwu φ  on S1Γ  (19a) 
 000 ===== yyxyx MNwv φ  on S2Γ  (19b) 
 0===== yxyyyxyyy QMMNN  on FΓ  (19c) 
 0000 ===== yxwvu φφ  on CΓ  (19d) 
 
Clearly, combinations of the boundary conditions in Eqs. (18) and (19) can be made, in view of 
the support types considered for each of the four edges of the rectangular laminate. The notation 
used hereafter for the boundary conditions is such that each edge is specified as simply supported 
(S), free (F) or clamped (C), strictly in this sequence: 0=x , ax = , 0=y  and by = . For simply 
supported boundary conditions two types of support are possible, usually named S1 and S2. 
Whichever is being used is specified in the end. Hence, the notation FFSS1 for example, is used 
to denote a rectangular laminate for which the edges ax ,0=  are free and the edges by ,0=  are 
simply supported of type 1. 
 
2.3 Least-Squares Formulation 
 
From a practical standpoint, it is best to develop a least-squares finite element model that allows 
the use of C0 basis functions in order to reduce the higher regularity requirements of any 
weighted residual formulation (see Pontaza [9]). Therefore, whenever necessary the governing 
equations should be transformed into an equivalent first-order system, which implies that 
additional independent variables need to be introduced. Nonetheless, this transformation can be 
argued to be somewhat beneficial, as the auxiliary variables may represent physically meaningful 
variables, in the framework of mixed formulations. In the present case though, both systems of 
governing equations are already of first-order, namely the system given by Eqs. (1)-(6) for static 
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analysis and the system given by Eqs. (7)-(12) for free vibration analysis. Hence, it is only 
necessary to develop the least-squares functional appropriate to each analysis and minimize it 
with respect to the chosen approximation spaces to obtain the correspondent least-squares finite 
element model.  

Basically, the least-squares functional is defined by measuring the residuals of the 
governing equations in terms of suitable norms. To do so, standard notation is used. Specifically, 
the norm corresponding to the Sobolev space ( )ΩsH , 0≥s  is denoted by Ω,s⋅  and ( )ΩsH  

represents the product space ( )[ ]nsH Ω , where n is the number of space dimensions. 
 

Thus, the least-squares functional for the static analysis of laminated composite plates is 
based on the norms of Eqs. (1)-(6), as follows: 
 

( )

( ) ⎟
⎠
⎞+∇−+∂−∂−+

+∂−∂−+−∂+

⎜
⎝
⎛ ++⋅∇+∂=
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2

Ω,0

2

Ω,0

2

Ω,0

T

2

Ω,0

2

Ω,0

T
2
1

ˆD

;,,,,,

ΦAQΦuBM

ΦBuANQM

QNQMNΦu

w

qqwJ

εε

εεε

εS

 (20) 

 
Similarly, the least-squares functional for free vibration analysis is, in turn, based on the norms 
of Eqs. (7)-(12), as follows: 
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w

IIwI

IIwJ

εεεε

ε
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 (21) 

Accordingly, the least-squares principle can be stated as: 
Find ( ) Xw ∈QMNΦu ,,,,,  such as for all ( ) Xt ∈RPOΨs ,,,,,  
 

( ) ( )qtJqwJ SS ;,,,,,;,,,,, RPOΨsQMNΦu ≤ , if static analysis (22) 
( ) ( )ωω ;,,,,,;,,,,, RPOΨsQMNΦu tJwJ VV ≤ , if free vibration analysis (23) 

 
The space X is defined below and satisfies the support type boundary conditions: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }ΩΩΩΩΩΩ,,,,, 111111 HHHHHQMNΦu ×××××∈= HwX  (24) 
 
Hence, the least-squares formulation leads the static and free vibration analysis of laminated 
composite plates to the unconstrained minimization problems given by Eq. (22) and Eq. (23), 
respectively. Subsequently, the finite element models are developed by minimizing the least-
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squares functional. Specifically, the Euler-Lagrange equations are derived for each minimization 
problem, so as to obtain the least-squares variational problem for static and free vibration 
analysis. 
 
2.4 Finite Element Models 
 
The mentioned least-squares variational problems give rise to the corresponding finite element 
models for static and free vibration analysis of laminated composite plates. Accordingly, the 
infinite dimensional space X is now restricted to the finite-dimensional subspace Xhp, where h 
denotes the mesh parameter and p the order for the variables basis functions.  
Ultimately, the mixed least-squares finite element model for static analysis takes the following 
matrix form: 
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In addition, the mixed least-squares model for free vibration analysis develops into a quadratic 
eigenvalue problem as follows, also in matrix form: 
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Both finite element models yield only symmetric matrices by means of the least-squares 
formulation. Specifically, in view of the adopted FSDT mixed formulation, all matrices can be 
structured in 13×13 submatrices by considering the variables separately: namely, the 5 
generalized displacements and the 8 stress resultants. The explicit integral expressions of all 
nonzero submatrices Kij, Cij and Mij and all nonzero subvectors Fi are included in Appendix A. 
The stiffness matrix K is shared by both models and it is not only symmetric but also positive-
definite, once the boundary conditions are properly imposed. This fact allows the use of robust 
solvers for the static analysis of laminated composite plates by the mixed least-squares model. In 
the quadratic eigenvalue problem, besides the stiffness matrix K, both C and M appear as indeed 
mass matrices. The difference is that the matrix M refers to the mass relation among generalized 
displacements only, whereas the matrix C translates the mass coupling between generalized 
displacements and stress resultants.  

In view of the finite element method, the approach for numerically evaluating the 
integrals implicit in Eqs. (25) and (26) is to map the finite elements that form the entire model 
into a master element. For both least-squares models implemented, the integrals are evaluated 
using full integration through Gauss quadrature rules, which implies a master element with the 
coordinate system: ( ) 1,1 ≤≤− ηξ . Over this master element, the variables are approximated by 
equal high-order C0 basis functions as exemplified for the transverse deflection below: 
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( ) ( ) ( )∑
=

=≈
n

j

w
jj

hp www
1

00 ,,, ηξϕηξηξ  (27) 

 
Here, wj denotes nodal values for the transverse deflection, φj

w the associated high-order C0 basis 
functions and n the number of nodes in the finite element. 

Specifically, the mixed least-squares model for static analysis uses the classical C0 
Lagrange basis functions, whereas the later model for free vibration analysis uses instead C0 
interpolant polynomials of Gauss-Lobatto-Legendre quadrature points. The last basis functions 
were initially used in the spectral element method and are in fact more suitable for high-order 
finite elements. In any case, the two-dimensional basis functions are given by tensor products of 
the corresponding one-dimensional basis functions.  
The well-known one-dimensional Lagrange basis functions of order p = N-1 can be defined by N 
equally spaced nodes iξ , given 11 −=ξ  and 1=Nξ , as follows: 

( ) ∏
≠
= −

−
=

N

ij
j ji

j
i

1 ξξ
ξξ

ξϕ  (28) 

 
Alternatively, the one-dimensional basis functions derived from Gauss-Lobatto-Legendre points 
of order p = N-1, can be written using the Legendre polynomial of same order PN-1, as follows: 
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 (29) 

 
where, iξ  represents N nodes now given by the roots of ( ) ( ) 01 1

2 =′− − ξξ NP  in the interval [-1,1]. 
For more details on these basis functions see Warburton et al [14]. 
Furthermore, the implemented least-squares models for static and free vibration analysis differ 
also in the Gauss quadrature rule used. Gauss-Legendre rule is used for static analysis, whereas 
Gauss-Lobatto-Legendre rule is conveniently employed for free vibration analysis, due to the 
chosen basis functions. 

The global system of equations either for static or free vibration analysis is then 
assembled from the element contributions by the standard summation approach, followed by 
imposition of the appropriate boundary conditions (see Reddy [6]). In fact, unlike weak form 
finite element models that allow weak imposition of stress resultants by integral boundary terms, 
the least-squares models only allow strong imposition of the boundary conditions both for stress 
resultants and generalized displacements. 
 
2.5 Computational Specifics 
 
The mixed least-squares model for static analysis of laminated composite plates yields a 
symmetric and positive-definite system of algebraic equations. Hence, its numerical solution is in 
fact straightforward. However, post-computation of strains and stresses such that no numerical 
differentiation is carried out requires a more attentive procedure. 

In detail, the membrane and flexural strains are computed first using the following 
laminate constitutive relations, once the solution of stress resultants is known: 
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In these equations, the implied vector form for the stress resultants is previously defined in Eq. 
(13) and the matrix form for the laminate stiffnesses is given by Eq. (15). Hence, only the 
appropriate form for the strain components needs to be specified, as follows: 
 

[ ]T0000
xyyyxx γεε=ε , [ ]T1111

xyyyxx γεε=ε , [ ]T000ˆ yzxz γγ=ε  (31) 
 
Secondly, the in-plane and transverse stresses are computed given the prior membrane and 
flexural strains, again through the laminate constitutive relations but yet in another form: 
 

( )10)()( εεQσ zkk += , 0)()( ˆˆˆ εQσ
kk =  (32) 

 
Specifically, the in-plane stresses are computed on the top and bottom of each kth layer while the 
transverse stresses are only computed within each kth layer, in agreement with the FSDT stress 
variations through the laminate thickness. For clearness, in the previous equations, it is 
considered the following matrix form for the lamina stiffnesses: 
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Additionally, the stress components are defined in a similar manner as the strains components 
before, as follows: 
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The post-computation described for static analysis of laminated composite plates ensures that the 
computed stresses experience no loss of accuracy through differentiation and are evaluated in 
nodal points as any other variable. 

Regarding the free vibration analysis of laminated composite plates, the mixed least-
squares model yields a quadratic eigenvalue problem involving symmetric matrices. Since 
numerical algorithm design for quadratic eigenproblems is still an active research topic, the main 
endeavor is to pursue an efficient method to solve the quadratic eigenproblem under 
consideration.  

One approach is to use methods that tackle the quadratic eigenproblem directly, usually 
variants of Newton’s method that find one eigenpair at a time. However, the availability of such 
methods is rather deficient. The approach actually chosen is to transform the quadratic 
eigenproblem into an equivalent “linear” generalized eigenproblem to allow the use of traditional 
methods for solution of eigenvalue problems (see Bai et al [15]). These methods are in fact 
widely available. In detail, the current implementation uses ARPACK subroutines, which have a 
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long proven robustness and accuracy, to compute a few eigenvalues and eigenvectors with 
Implicitly Restarted Arnoldi Methods (IRAM). 
Specifically, the assembled quadratic eigenvalue problem is of the following form: 
 
[ ] [ ] [ ]( ){ } { }0Δ2 =++ MCK λλ , 2ωλ =   (35) 

 
For reasons soon made clear, an invert spectral transformation is first considered, as follows:  
 
[ ] [ ] [ ]( ){ } { }0Δ2 =++ KCM μμ , λμ 1=  (36) 

 
Then, the desired transformation into an equivalent generalized eigenproblem takes the form 
specified below: 
 
[ ]{ } [ ]{ }xBxA μ=  (37) 
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Ultimately, this approach reduces the original quadratic eigenproblem into a non-symmetric 
generalized eigenproblem, where the matrix B is still symmetric and positive-definite. In fact, the 
reason for the prior invert transformation is to ensure that the matrix B is positive-definite by 
depending on the stiffness matrix K rather than the mass matrix M (besides the identity matrix I).  
Considering the above transformations, the equivalent generalized eigenproblem can be 
efficiently solved by ARPACK subroutines. In addition, the few computed eigenvalues and 
eigenvectors of the equivalent eigenproblem must then be used to obtain the eigenvalues and 
eigenvectors of the original quadratic eigenproblem through the relations above. 
Finally, the specific nature of the finite element matrices K, C and M, render the quadratic 
eigenproblem and the equivalent generalized eigenproblem generally complex solutions. 
However, once the original eigenvalues and eigenvectors are recovered, the complex solutions 
(in conjugate pairs) show a negligible imaginary part relatively to the real counterpart. So, for 
practical purposes, only the real part of the solution of free vibration analysis of laminated 
composite plates is reported in the following numerical examples. 
 
2.6 Numerical Examples 
 
The predictive capabilities of the proposed mixed least-squares models are now demonstrated 
through selected problems of static and free vibration analysis of laminated composite plates. 
Specifically, four square laminated composite plates are considered with different boundary 
conditions and a range of side-to-thickness ratios, covering thick to thin laminates. The particular 
laminates under analysis are two cross-ply laminates (0/90) and (0/90/0/90/0) and two angle-ply 
laminates (-45/45) and (30/-60/60/-30). In addition, the selected problems of static analysis 
concern laminated composite plates under a uniformly distributed load of intensity 0q . 

The material properties for all layers of the given laminates are assumed to be the same, 
as shown: 
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2521 =EE , 21312 5.0 EGG == , 223 2.0 EG = , 25.012 =ν  (39) 
Moreover, the subsequent numerical results both in graphical and tabular forms for the main 
variables are nondimensionalized, as specified below: 
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Analytical solutions are also presented alongside the numerical results for comparison. Basically, 
the well-known FSDT Navier solutions or Lévy solutions for static or free vibration analysis of 
laminated composite plates are reported, according to the problem under analysis (see Reddy 
[7]). For static analysis, the Navier series are evaluated for 40,...,1, =nm  and the Lévy series for 

40,...,1=n . 
 
Cross-ply laminates 
 
The first selected problem is the static analysis of the antisymmetric laminate (0/90) with SSSS1 
boundary conditions. A uniform mesh of 4×4 square elements is used to model the composite 
plate and an increasing order for the mixed least-squares element is considered. Specifically, 4th, 
6th and 8th-order elements are successively applied in order to investigate the p-convergence of 
the proposed model. The computed results are summarized in Table 1.  
 
 

Table 1. Static results for the laminate (0/90) SSSS1 using a uniform mesh 4×4. 
 

ha  p-order        
10 4 1.9469 0.6265 -0.1621 3.4675 1.0712 0.0973 0.5944 
 6 1.9469 0.6268 -0.1605 3.4698 1.0716 0.0963 0.5948 
 8 1.9469 0.6268 -0.1604 3.4703 1.0716 0.0962 0.5949 
 Analytical 1.9469 0.6268 -0.1603 3.4194 1.0716 0.0962 0.5862 
20 4 1.7583 0.6288 -0.1609 3.4801 1.0745 0.0965 0.5966 
 6 1.7582 0.6291 -0.1580 3.4883 1.0748 0.0948 0.5980 
 8 1.7582 0.6291 -0.1576 3.4880 1.0748 0.0946 0.5979 
 Analytical 1.7582 0.6290 -0.1575 3.4369 1.0748 0.0945 0.5892 
100 4 1.6980 0.6297 -0.1621 3.4560 1.0757 0.0973 0.5924 
 6 1.6980 0.6301 -0.1571 3.4938 1.0762 0.0943 0.5989 
 8 1.6981 0.6301 -0.1561 3.4936 1.0763 0.0937 0.5989 
 Analytical 1.6980 0.6300 -0.1558 3.4427 1.0762 0.0935 0.5902 
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The effect of mesh refinement is examined as well using only 4th-order elements and a uniform 
mesh of 4×4, 5×5 and 8×8 square elements. These numerical results are in turn shown in Table 2. 
Both tables include the results for transverse deflection, stress resultants and stresses, considering 
side-to-thickness ratios of 10, 20 and 100. In particular, for all stress results tabulated henceforth 
the right superscript specifies   the layer where the results are referred to and when necessary 
also the bottom or top interface by b or t, respectively. Furthermore, Navier analytical solutions 
for this problem are shown throughout both tables.  
 

Table 2. Static results for the laminate (0/90) SSSS1 using the 4th-order element. 
 

ha  Mesh        
10 4×4 1.9469 0.6265 -0.1621 3.4675 1.0712 0.0973 0.5944 
 5×5 1.9469 0.6268 -0.1612 3.4709 1.0716 0.0967 0.5950 
 8×8 1.9469 0.6267 -0.1605 3.4707 1.0716 0.0963 0.5950 
 Analytical 1.9469 0.6268 -0.1603 3.4194 1.0716 0.0962 0.5862 
20 4×4 1.7583 0.6288 -0.1609 3.4801 1.0745 0.0965 0.5966 
 5×5 1.7583 0.6291 -0.1594 3.4886 1.0748 0.0957 0.5980 
 8×8 1.7582 0.6290 -0.1580 3.4882 1.0748 0.0948 0.5980 
 Analytical 1.7582 0.6290 -0.1575 3.4369 1.0748 0.0945 0.5892 
100 4×4 1.6980 0.6297 -0.1621 3.4560 1.0757 0.0973 0.5924 
 5×5 1.6980 0.6300 -0.1598 3.4968 1.0762 0.0959 0.5995 
 8×8 1.6980 0.6300 -0.1572 3.4926 1.0762 0.0943 0.5987 
 Analytical 1.6980 0.6300 -0.1558 3.4427 1.0762 0.0935 0.5902 
 

Overall, the numerical results in Tables 1 and 2 are in good agreement with the analytical 
solutions for the entire range of side-to-thickness ratios analyzed. In fact, the centre transverse 
deflection is rightly predicted using just 4th-order elements even when a thin laminate is 
considered (with a side-to-thickness ratio of 100). Most notably, convergence towards the 
analytical solution is verified, either with p- or h-refinements, as should be expected. Actually, 
an exact study on the asymptotic behaviour of mixed finite elements based on least-squares 
formulation can be found in Pontaza [9]. In the case of the transverse force resultant and 
transverse stress, it is noted a slight discrepancy between the analytical and numerical results, 
which is believed to be due to a not as accurate analytical representation. 

In Fig. 2, it is shown the predictive distributions of the in-plane stresses σyy and σxy along 
the laminate thickness, using a side-to-thickness ratio of 10. The proper Navier solution is plotted 
alongside the numerical results obtained with the 8th-order element in a 4×4 mesh. 
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Figure 2. In-plane stresses for the laminate (0/90) SSSS1 with 10=ha . 
 

Continuing the analysis of the same antisymmetric laminate (0/90) with SSSS1 boundary 
conditions, the problem of free vibration is considered next. In this case, a uniform mesh of 4×4 
square elements is used together with the 4th-order mixed least-squares element. The results for 
the fundamental frequency using the same side-to-thickness ratios as before are presented in 
Table 3, along with the Navier solutions.  
 

Table 3. Free vibration results for the laminate (0/90) SSSS1 
using a uniform mesh 4×4. 

 
ha  p-order  

10 4 8.9006 
 Analytical 8.9001 
20 4 9.4746 
 Analytical 9.4745 
100 4 9.6873 
 Analytical 9.6873 

 
As mentioned earlier, the mixed least-squares model for free vibration analysis yields a 

quadratic eigenproblem, that to be later solved by ARPACK subroutines requires an invert 
spectral transformation followed by another transformation into an equivalent generalized 
eigenproblem. With this mind, the smaller eigenvalues of the original quadratic eigenproblem 
correspond to the larger eigenvalues of the generalized eigenproblem. Hence, to compute the 
lower natural frequencies of the quadratic eigenproblem, it is specified to ARPACK to extract 
the eigenvalues of largest real part. Specifically, the results in Table 3 are obtained by specifying 
the extraction of 2 eigenvalues (which come as a complex conjugate pair) using 50 Arnoldi basis 
vectors. In fact, the choice of both these numbers for an optimal performance of ARPACK is 
truly problem dependent. Since this optimum choice was not investigated, whenever free 
vibration results are presented the number of eigenvalues requested and number of Arnoldi basis 
vectors used are explicitly stated.  

Returning to Table 3, the computed fundamental frequencies are remarkably in 
agreement with the analytical solutions, for all side-to-thickness ratios considered. In fact, the 
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4th-order mixed least-squares element appears to be quite sufficient to obtain very goods results 
for the fundamental frequency in this case.  

The next problem is the static analysis of the symmetric laminate (0/90/0/90/0) with 
FFSS1 boundary conditions. Once more, p-convergence of the proposed mixed least-squares 
element is inspected, using in turn 4th, 6th and 8th-order elements in a uniform mesh of 4×4 
square elements. Table 4 shows the results for the transverse deflection, stress resultants and 
stresses, using again side-to-thickness ratios of 10, 20 and 100. For this problem, Lévy analytical 
solutions are presented for comparison. 
 

Table 4. Static results for the laminate (0/90/0/90/0) FFSS1 using a uniform mesh 4×4. 
 

ha  p-order        
10 4 3.0600 0.0061 1.2458 4.9787 0.0179 1.8719 0.9335 
 6 3.0600 0.0061 1.2458 4.9785 0.0179 1.8718 0.9335 
 8 3.0600 0.0061 1.2458 4.9785 0.0179 1.8718 0.9335 
 Analytical 3.0600 0.0061 1.2458 4.9279 0.0179 1.8718 0.9240 
20 4 2.7082 0.0069 1.2449 4.9770 0.0179 1.8705 0.9332 
 6 2.7082 0.0070 1.2449 4.9750 0.0179 1.8706 0.9328 
 8 2.7082 0.0069 1.2449 4.9748 0.0179 1.8705 0.9336 
 Analytical 2.7082 0.0069 1.2449 4.9241 0.0179 1.8705 0.9233 
100 4 2.5956 0.0072 1.2446 4.9787 0.0179 1.8700 0.9335 
 6 2.5957 0.0073 1.2446 4.9792 0.0179 1.8701 0.9336 
 8 2.5955 0.0074 1.2446 4.9783 0.0179 1.8701 0.9334 
 Analytical 2.5957 0.0074 1.2446 4.9230 0.0179 1.8701 0.9231 
 

Noticeably, the computed numerical results in Table 4 show excellent agreement with the 
analytical solutions, even more than in the previous static problem. Not only the centre 
transverse deflection, but also stress resultants and stresses can be predicted exactly using just 
4th-order elements, for all side-to-thickness ratios considered. Basically, it seems that most of the 
computed results are converged using the 4th-order elements, including the results for a thin 
laminate. Again, only the transverse force resultant and transverse stress show a small 
discrepancy between the analytical and numerical results. This occurrence is more or less 
apparent throughout every static analysis problems here presented. So, to avoid repetition, it is 
understood henceforth that the static analytical solutions for these variables may not be fully 
converged in the series representation. 

Fig. 3 shows the distributions for the in-plane stresses σxx and σyy through the laminate 
thickness, using a side-to-thickness ratio of 10. These plots contain the numerical results by the 
8th-order element in a 4×4 mesh with the Lévy solution. 
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Figure 3. In-plane stresses for the laminate (0/90/0/90/0) FFSS1 with 10=ha . 
 

To conclude the static analysis of both cross-ply laminates previously considered, the 
transverse deflections along the line 2/ax =  of the plate are plotted in Fig. 4. Namely, the 
antisymmetric laminate (0/90) SSSS1 and the symmetric laminate (0/90/0/90/0) FFSS1. Fig. 4 
contains then, the corresponding analytical solutions and numerical results using the 6th-order 
element in a 4×4 mesh, given side-to-thickness ratios of 10 and 100 (i.e. for thick and thin 
laminates, respectively). 
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Figure 4. Transverse deflections along 2ax =  for the cross-ply laminates. 

 
Evidently, Fig. 4 demonstrates that the computed results by the proposed mixed least-

squares element for static analysis are in any case well in agreement with the analytical solutions, 
whether thin or thick laminates are concerned. In fact, results so far suggest that this mixed least-
squares model is insensitive to shear locking, at least for the p-levels considered. 
The last selected problem of this section devoted to cross-ply laminates is the free vibration 
analysis of the former symmetric laminate (0/90/0/90/0), but with SSSS2 boundary conditions 
instead. This time, the 5 lowest natural frequencies are investigated using a uniform mesh of 4×4 
square elements and the 4th-order mixed least-squares element. The numerical results for these 
natural frequencies are given in Table 5 for the usual side-to-thickness ratios, along with the 
Navier solutions. In particular, this computation uses ARPACK to extract of a cluster of 14 
eigenvalues (in complex conjugate pairs) with 57 Arnoldi basis vectors. 
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Table 5. Free vibration results for the laminate (0/90/0/90/0) SSSS2 using a uniform mesh 4×4. 
 

ha  p-order      
10 4 12.5650 24.0078 30.0457 36.5359 40.1397 
 Analytical 12.5651 24.0120 30.0549 36.5559 40.1329 
20 4 14.3875 29.2513 42.4381 50.1919 54.8037 
 Analytical 14.3875 29.2508 42.4421 50.2606 54.8754 
100 4 15.1909 31.8771 51.7589 60.3319 64.9051 
 Analytical 15.1909 31.8770 51.7581 60.3285 64.9772 

 
 

Overall, the 5 computed natural frequencies exhibit an outstanding accordance with the 
analytical solutions, regardless of the side-to-thickness ratios considered. Actually, the 4th-order 
element is able to predict quite well the natural frequencies higher than the fundamental 
frequency, even though the results slightly worsen as the natural frequencies increase (which is 
expected to some extent).  

The following surface plots illustrate the modes of vibration computed for these 5 natural 
frequencies, concerning only the transverse deflection. 
 

    
Figure 5. Modes of vibration 1 and 2 for the laminate (0/90/0/90/0) SSSS2. 

    
Figure 6. Modes of vibration 3 and 4 for the laminate (0/90/0/90/0) SSSS2. 
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Figure 7. Mode of vibration 5 for the laminate (0/90/0/90/0) SSSS2. 
 
The represented modes of vibration in Figs. 5-7 are also obtained using the 4th-order mixed 
least-squares element in a 4×4 uniform mesh and specifically for a side-to-thickness ratio of 10, 
although qualitatively the modes are the same for all side-to-thickness ratios. To be precise, all 
these graphics are constructed from the eigenvectors solution (for transverse deflection) and 
taking into account the 4th-order basis functions as well as the finite elements geometry 
transformations between the master element. So, ultimately, the overall mode shape is displayed 
by putting together every finite element contribution.  

The modes of vibration for the transverse deflection are indeed in agreement with the 
Navier solutions, as the specific pair of harmonics that correspond to each analytical natural 
frequency matches the represented modes. Explicitly, the pair of harmonics along x and y 
respectively, for increasing natural frequencies are (1,1), (1,2), (2,1), (2,2) and (1,3). Therefore, 
the proposed mixed least-squares model for free vibration analysis based on C0 high-order basis 
functions, is in fact capable of good predictions for the natural frequencies as well as the modes 
of vibration. 
 
Angle-ply laminates 
 
This section starts with the static analysis problem of the antisymmetric laminate (-45/45) with 
SSSS2 boundary conditions. Similarly to the first selected problem, the effect of both p- and h-
refinements is examined. Table 6 shows the computed results using a fixed uniform mesh of 4×4 
square elements and an increasing order for the mixed least-squares element, whereas Table 7 
presents the results using a fixed p-level with the 4th-order element and increasingly refined 
meshes. Both tables include results of transverse deflection, stress resultants and stresses, with 
side-to-thickness ratios of 10, 20 and 100. The appropriate Navier analytical solutions are 
presented as well. 
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Table 6. Static results for the laminate (-45/45) SSSS2 using a uniform mesh 4×4. 
 

ha  p-order        
10 4 1.2792 0.3718 -0.4417 3.2730 0.3476 0.4311 0.3928 
 6 1.2792 0.3720 -0.4388 3.2778 0.3477 0.4285 0.3933 
 8 1.2792 0.3720 -0.4383 3.2785 0.3478 0.4281 0.3934 
 Analytical 1.2792 0.3720 -0.4379 3.2276 0.3477 0.4277 0.3873 
20 4 1.0907 0.3744 -0.4500 3.2468 0.3496 0.4380 0.3896 
 6 1.0907 0.3745 -0.4487 3.2507 0.3497 0.4370 0.3901 
 8 1.0907 0.3745 -0.4482 3.2514 0.3497 0.4365 0.3902 
 Analytical 1.0907 0.3744 -0.4477 3.2005 0.3497 0.4360 0.3841 
100 4 1.0305 0.3762 -0.4547 3.2357 0.3512 0.4419 0.3883 
 6 1.0305 0.3755 -0.4558 3.2392 0.3505 0.4430 0.3887 
 8 1.0305 0.3743 -0.4556 3.2396 0.3505 0.4428 0.3887 
 Analytical 1.0305 0.3755 -0.4549 3.1884 0.3505 0.4422 0.3826 
 

Table 7. Static results for the laminate (-45/45) SSSS2 using the 4th-order element. 
 

ha  Mesh        
10 4×4 1.2792 0.3718 -0.4417 3.2730 0.3476 0.4311 0.3928 
 5×5 1.2792 0.3721 -0.4405 3.2798 0.3478 0.4301 0.3936 
 8×8 1.2792 0.3720 -0.4391 3.2788 0.3477 0.4288 0.3935 
 Analytical 1.2792 0.3720 -0.4379 3.2276 0.3477 0.4277 0.3873 
20 4×4 1.0907 0.3744 -0.4500 3.2468 0.3496 0.4380 0.3896 
 5×5 1.0907 0.3745 -0.4496 3.2513 0.3497 0.4377 0.3902 
 8×8 1.0907 0.3744 -0.4487 3.2516 0.3497 0.4370 0.3902 
 Analytical 1.0907 0.3744 -0.4477 3.2005 0.3497 0.4360 0.3841 
100 4×4 1.0305 0.3762 -0.4547 3.2357 0.3512 0.4419 0.3883 
 5×5 1.0305 0.3754 -0.4548 3.2355 0.3504 0.4421 0.3883 
 8×8 1.0306 0.3755 -0.4551 3.2393 0.3506 0.4424 0.3887 
 Analytical 1.0305 0.3755 -0.4549 3.1884 0.3505 0.4422 0.3826 
 

Again, the numerical results shown in both Tables 6 and 7 are altogether in good 
agreement with the analytical solutions, for the range of side-to-thickness ratios analyzed. 
Specifically, convergence of the numerical results is once more verified for both p- and h-
refinements. Actually, it is interesting to note that the number of degrees of freedom given by the 
8th-order elements in a 4×4 mesh is exactly the same as the 4th-order elements in an 8×8 mesh. 
A comparison between these two cases suggests that p-refinement is somewhat more efficient, 
especially in view of side-to-thickness ratios of 10 and 20. However, for an exact study on this 
matter see Pontaza [9]. Still, in this problem it appears that the 4th-order element is sufficient to 
provide accurate predictions for the transverse deflection as well as reasonable predictions for 
stresses and stress resultants, whether thin or thick laminates are considered. 

The in-plane stresses σyy and σxy through the laminate thickness are plotted in Fig. 8, 
given a side-to-thickness ratio of 10, and using the results obtained by the 8th-order element in a 
4×4 mesh together with the Navier analytical solution. 
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Figure 8. In-plane stresses for the laminate (-45/45) SSSS2 with 10=ha . 
 

The problem of free vibration analysis of the antisymmetric laminate (-45/45) with 
SSSS2 boundary is now considered. The fundamental frequency is computed by the 4th-order 
mixed least-squares element in a 4×4 uniform mesh, for the same side-to-thickness ratios as 
before. In this particular computation with ARPACK, it is specified the extraction of 2 
eigenvalues (in a complex conjugate pair) using 50 Arnoldi basis vectors. The computed results 
are presented in Table 8 as well as the Navier solutions. 
 

Table 8. Free vibration results for the laminate (-45/45) SSSS2 using a uniform mesh 4×4. 
 

ha  p-order  
10 4 10.8951 
 Analytical 10.8951 
20 4 11.9327 
 Analytical 11.9329 
100 4 12.3408 
 Analytical 12.3408 

 
 

From Table 8, it is verified that the computed fundamental frequencies are almost entirely 
coincident with the analytical solutions, for these side-to-thickness ratios. Hence, concurring 
with the previous free vibration analysis problems, the mixed least-squares model of 4th-order is 
quite capable of obtaining excellent results for the fundamental frequencies. 

The very last selected problem considers the static analysis of the antisymmetric laminate 
(30/-60/60/-30) with SSSS2 boundary conditions. In this case, a uniform mesh of 4×4 square 
elements is used along with either the 4th, 6th or 8th-order elements. Table 9 shows these 
numerical results for the transverse deflection, stress resultants and stresses, with the usual side-
to-thickness ratios. The Navier analytical solutions are likewise shown. 
 
 
 
 

hz hz
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Table 9. Static results for the laminate (30/-60/60/-30) SSSS2 using a uniform mesh 4×4. 
 

ha  p-order        
10 4 0.9261 0.7107 0.4410 3.7218 0.4702 0.4034 0.5423 
 6 0.9262 0.7125 0.4419 3.7172 0.4715 0.4041 0.5416 
 8 0.9262 0.7125 0.4419 3.7178 0.4714 0.4041 0.5417 
 Analytical 0.9261 0.7125 0.4418 3.6668 0.4714 0.4041 0.5343 
20 4 0.7306 0.7224 0.4391 3.7279 0.4785 0.3947 0.5432 
 6 0.7307 0.7274 0.4413 3.7105 0.4821 0.3963 0.5407 
 8 0.7307 0.7273 0.4412 3.7114 0.4821 0.3962 0.5408 
 Analytical 0.7307 0.7273 0.4412 3.6604 0.4821 0.3962 0.5334 
100 4 0.6671 0.7235 0.4364 3.7592 0.4796 0.3898 0.5478 
 6 0.6682 0.7326 0.4413 3.7074 0.4858 0.3937 0.5402 
 8 0.6681 0.7326 0.4412 3.7104 0.4858 0.3936 0.5407 
 Analytical 0.6681 0.7325 0.4411 3.6594 0.4858 0.3936 0.5332 
 
 

Table 9 shows yet again that the computed results are overall well in agreement with the 
analytical solutions. As previously stated, it is evident that even when thin laminates are 
considered the proposed mixed least-squares finite element experiences no shear-locking, so far 
as 4th- or higher-order elements are used. Nevertheless, in this particular problem the numerical 
results for stresses and stress resultants by the 4th-order element do not show as much accuracy 
as in the previous static problems, especially for a side-to-thickness ratio of 100. In fact, p-
convergence is quite apparent when the subsequent results by the 6th-order elements are 
examined. 

The predicted in-plane stresses σxx and σyy through the laminate thickness are plotted in 
the following Fig. 9, for a side-to thickness ratio of 10. Again, the stress results are given by the 
8th-order element in a 4×4 uniform mesh along with the analytical solution. 
Similarly to the cross-ply laminates earlier, the static analysis of both angle-ply laminates is 
concluded with the plot of the transverse deflections along the line 2/ax = of the plate, 
considering side-to-thickness ratios of 10 and 100. So, it is shown in the next Fig. 10 the proper 
transverse deflections distributions obtained by the 6th-order element in a 4×4 uniform mesh 
with the corresponding analytical solutions.  
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Figure 9. In-plane stresses for the laminate (30/-60/60/-30) SSSS2 with 10=ha . 
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Figure 10. Transverse deflections along 2ax =  for the angle-ply laminates. 

 
It is apparent in Fig. 10 that the numerical results obtained by the mixed least-squares 

element follow extremely well the analytical solutions, for all the cases presented. Furthermore, 
no evidence of shear-locking has been encountered in any static and free vibration analysis 
problems considered to date, intended for assessment of the proposed mixed least-squares 
models. 
 
2.7 Concluding Remarks 
 
This report presents mixed least-squares finite element models for static and free vibration 
analysis of laminated composite plates as a reliable alternative to the mixed weak form models. 
The theoretical and computational advantages of the least-squares variational principle combined 
with mixed formulations are stated from the start and verified for the proposed models. 
Explicitly, the least-squares formulation leads to an unconstrained minimization problem, which 
ensures that no restrictive compatibility conditions are required among the mixed finite element 
approximation spaces. In addition, the mixed least-squares discrete models, once the boundary 
conditions are duly imposed, yield a symmetric and positive-definite stiffness matrix. 
The proposed mixed least-squares models for static and free vibration analysis of laminated 
composite plates consider the FSDT with generalized displacements and stress resultants as 
independent variables, using equal-order interpolation. In fact, to ensure a correct minimization 
of the least-squares functional, high-order C0 basis functions and full integration are used to 
develop the discrete finite element models. Specifically, the model for static analysis uses the 
classical C0 Lagrange basis functions and the later model for free vibration analysis uses C0 
interpolant polynomials of Gauss-Lobatto-Legendre quadrature points, which are more suitable 
basis functions for high-order elements. 
The predictive capabilities of both mixed least-squares models are assessed by a selection of 
numerical examples concerning four laminated composite plates with different boundary 
conditions and a range of side-to-thickness ratios, from thick to thin laminates. Overall, the 
numerical results for static and free vibration analysis show excellent agreement with the 
analytical solutions for all problems examined. In the case of static analyses, results for 
transverse deflection, stress resultants and stresses are carefully inspected and specially, 
convergence of the computed results towards the analytical solutions is verified for both p- and 

w
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h-refinements. In free vibration analyses, the natural frequencies are remarkably well predicted 
and even the modes of vibration are correctly represented. Furthermore, both mixed least-squares 
models are shown to be insensitive to shear-locking when modeling thin laminates.  
 
2.8 Appendix  for Part 2 
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These integral expressions make use of the symmetry in the laminate stiffnesses, namely, 
jiij AA = , jiij BB =  and jiij DD = . In addition, for any submatrice relating two given variables (a 

and b) the following relations hold, ba
ji

ab
ij KK = , ba

ji
ab
ij CC =  and ba

ji
ab
ij MM = , which renders 

symmetry to the all finite element matrices. 
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bbeenncchhmmaarrkk  mmooddeell  pprroobblleemmss  iinn  tthhee  aarreeaa  ooff  ssoolliidd  mmeecchhaanniiccss  wwiitthh  ssppeecciiaall  ffooccuuss  oonn  ccoommppoossiittee  ppllaattee  aanndd  sshheellll  
ssttrruuccttuurreess..  TThhee  ddeevveellooppeedd  mmeetthhooddoollooggyy  aanndd  hhaass  aapppplliiccaattiioonnss  ttoo  ssoolliidd  aanndd  ssttrruuccttuurraall  mmeecchhaanniiccss  pprroobblleemmss  aanndd  
iitt  wwiillll  pprroovviiddee  hhiigghhllyy  rreelliiaabbllee,,  rroobbuusstt  aanndd  aaccccuurraattee  ccoommppuuttaattiioonnaall  tteecchhnnoollooggyy  ttoo  tthhee  UUnniitteedd  SSttaatteess  AArrmmyy  
LLaabboorraattoorriieess..  TThhee  ssppeecciiffiicc  oobbjjeeccttiivveess  ooff  tthhiiss  rreesseeaarrcchh  wweerree  ttoo  ((11))  ddeevveelloopp  aaccccuurraattee  aanndd  ccoonnssiisstteenntt  ssttrruuccttuurraall  
tthheeoorriieess  aanndd  aassssoocciiaatteedd  ffiinniittee  eelleemmeenntt  mmooddeellss  ooff  ppllaatteess  aanndd  sshheellllss  tthhaatt  aaccccoouunntt  ffoorr  ttrraannssvveerrssee  sshheeaarr  
ddeeffoorrmmaattiioonn  aanndd  iilllluussttrraattee  tthhee  aaccccuurraaccyy  uussiinngg  bbeenncchhmmaarrkk  ppllaattee  aanndd  sshheellll  pprroobblleemmss;;  ((22))  ddeevveelloopp  mmiixxeedd  aanndd  
lleeaasstt--ssqquuaarreess  ffiinniittee  eelleemmeenntt  mmooddeellss  ooff  tthhee  rreeffiinneedd  tthheeoorriieess  ffoorr  tthhee  aannaallyyssiiss  ooff  ppllaatteess  aanndd  sshheellllss;;  aanndd  ((33))  
iinnccoorrppoorraattee  ggeeoommeettrriicc  nnoonnlliinneeaarriittyy  iinnttoo  tthhee  mmiixxeedd  aanndd  lleeaasstt--ssqquuaarreess  ffiinniittee  eelleemmeenntt  mmooddeellss  aanndd  ssttuuddyy  
pprroobblleemmss  ooff  ppllaatteess  aanndd  sshheellllss..  

1144..    SSUUBBJJEECCTT  TTEERRMMSS  

llaammiinnaatteedd  ccoommppoossiittee  ppllaatteess  aanndd  sshheellllss,,  lleeaasstt--ssqquuaarreess  ffiinniittee  eelleemmeenntt  mmooddeellss,,  
llaayyeerrwwiissee  tthheeoorryy,,  tthhiirrdd--oorrddeerr  sshheeaarr  ddeeffoorrmmaattiioonn  tthheeoorryy,,  bbeennddiinngg,,  bbuucckklliinngg    aanndd  
vviibbrraattiioonn  rreessppoonnssee  

1155..    NNUUMMBBEERR  OOFF  PPAAGGEESS  
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33..  IINNVVEENNTTIIOONNSS      NNoonnee  

  
44..  SSCCIIEENNTTIIFFIICC  PPRROOGGRREESSSS  AANNDD  AACCCCOOMMPPLLIISSHHMMEENNTTSS  
  
AA  tteennssoorr--oorriieenntteedd  ffiinniittee  eelleemmeenntt  ffoorrmmuullaattiioonn  iiss  ddeevveellooppeedd  bbyy  uussiinngg  ccuurrvviilliinneeaarr  ccoooorrddiinnaatteess..  HHiigghh--oorrddeerr  
eelleemmeennttss  wwiitthh  LLaaggrraannggiiaann  iinntteerrppoollaattiioonnss  aarree  uusseedd  ttoo  aavvooiidd  mmeemmbbrraannee  aanndd  sshheeaarr  lloocckkiinngg..  TThhee  ffoorrmmuullaattiioonn  
iiss  bbaasseedd  oonn  tthhee  ffiirrsstt--oorrddeerr  sshheellll  tthheeoorryy  wwiitthh  sseevveenn  ppaarraammeetteerrss  wwiitthh  eexxaacctt  nnoonnlliinneeaarr  ddeeffoorrmmaattiioonnss  aanndd  
uunnddeerr  tthhee  ffrraammeewwoorrkk  ooff  tthhee  LLaaggrraannggiiaann  ddeessccrriippttiioonn..  NNuummeerriiccaall  rreessuullttss  ooff  tthhee  pprreesseenntt  ffoorrmmuullaattiioonn  ffoorr  
ttyyppiiccaall  bbeenncchhmmaarrkk  wwiitthh  aapppplliiccaattiioonnss  ttoo  llaammiinnaatteedd  ccoommppoossiittee  sshheellllss  aanndd  ffuunnccttiioonnaallllyy  ggrraaddeedd  sshheellllss  wweerree  
ccaarrrriieedd  oouutt..  LLeeaasstt--ssqquuaarreess  bbaasseedd  ffiinniittee  eelleemmeenntt  mmooddeellss  ooff  vviissccoouuss  iinnccoommpprreessssiibbllee  fflloowwss  aarree  aallssoo  ddeevveellooppeedd  
wwiitthh  tthhee  iinntteerreesstt  ttoo  ffoorrmmuullaattee  ccoommppuuttaattiioonnaall  pprroocceedduurreess  ffoorr  fflluuiidd--ssttrruuccttuurree  iinntteerraaccttiioonn  pprroobblleemmss..  FFiinnaallllyy,,  
mmiixxeedd  ffiinniittee  eelleemmeenntt  mmooddeellss  ooff  llaammiinnaatteedd  ccoommppoossiittee  ppllaatteess  wweerree  aallssoo  ddeevveellooppeedd  tthhaatt  aallllooww  aaccccuurraattee  
ccoommppuuttaattiioonn  ooff  ssttrreessss  rreessuullttaannttss..  IInn  ssuummmmaarryy,,  tthhee  ffoolloowwiinngg  aaccccoommpplliisshhmmeennttss  aarree  rreeppoorrtteedd::  

  
11..  TThhee  tthheeoorreettiiccaall  aass  wweellll  aass  ffiinniittee  eelleemmeenntt  ffoorrmmuullaattiioonn  ooff  uunniiffiieedd,,  ccoonnssiisstteenntt,,  nnoonnlliinneeaarr  sshheellll  tthheeoorryy  

tthhaatt  aaccccoouunnttss  ffoorr  llaarrggee  ddiissppllaacceemmeennttss,,  llaarrggee  rroottaattiioonnss  aanndd  mmooddeerraatteellyy  llaarrggee  ssttrraaiinnss  wwaass  
ddeevveellooppeedd..  TThhee  ccoommppuuttaattiioonnaall  mmooddeell  iiss  uusseedd  ttoo  aannaallyyzzee  ((aa))  llaammiinnaatteedd  ccoommppoossiittee  sshheellllss  aanndd  ((bb))  
ttwwoo--pphhaassee  ffuunnccttiioonnaallllyy  ggrraaddeedd  sshheellllss..  TThhee  aapppplliiccaabbiilliittyy  ooff  tthhee  ffiinniittee  eelleemmeenntt  mmooddeell  ttoo  aa  vvaarriieettyy  ooff  
ggeeoommeettrriiccaallllyy  ccoommpplleexx  sshheellllss  iiss  ddeemmoonnssttrraatteedd  wwiitthh  aa  aa  nnuummbbeerr  ooff  bbeenncchhmmaarrkk  pprroobblleemmss  ooff  
iissoottrrooppiicc,,  llaammiinnaatteedd  ccoommppoossiittee  ((ccrroossss--ppllyy,,  aannggllee--ppllyy,,  aanndd  ggeenneerraall  llaammiinnaatteedd))  sshheellllss..    

22..    LLeeaasstt--ssqquuaarreess  ffiinniittee  eelleemmeenntt  mmooddeellss  ooff  vviissccoouuss  iinnccoommpprreessssiibbllee  fflluuiiddss  aarree  ddeevveellooppeedd..  TThhee  mmooddeellss  
aarree  cchhaarraacctteerriizzeedd  bbyy  ppoossiittiivvee--ddeeffiinniittee  ssyysstteemm  ooff  eeqquuaattiioonnss  tthhaatt  ccaann  bbee  ssoollvveedd  uussiinngg  iitteerraattiivvee  
mmeetthhooddss..  

33..    MMiixxeedd  ffiinniittee  eelleemmeenntt  mmooddeellss  ooff  llaammiinnaatteedd  ppllaatteess  iinn  wwhhiicchh  tthhee  ggeenneerraalliizzeedd  ddiissppllaacceemmeennttss  aanndd  
ssttrreessss  rreessuullttaannttss  aarree  aapppprrooxxiimmaatteedd  iinnddeeppeennddeennttllyy  aarree  ddeevveellooppeedd..  
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